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Seeking Global Minima

WAN AHMAD TAIUDDIN WAN ABDULLAH

Physics Department,* Imperial College, London SW7 2BZ, United Kingdom and Jabatan Fizik,! Universiti Malaya, 59100 Kuala Lumpur, Malaysia

Received November 20, 1991; revised March 4. 1993

Ease in finding the configuration at the global energy minimum in a
symmetric neural network is important for combinatorial optimization
problems. We carry out a comprehensive survey of available strategies
for seeking global minima by comparing their performances in the
binary representation problem. We recall our previous comparison
of steepest descent with analeg dynamics, genetic hill-climbing,
simulated diffusion, simulated annealing, threshold accepting and
simulated tunneling. To this, we add comparisons to other strategies
including taboo search and one with field-ordered updating. © 1934
Academic Press, Inc.

L INTRODUCTION

Certain classes of cooperative systems like spin glasses
and neural networks possess dynamics which can be con-
veniently described in terms of traversing energy landscapes.
Conversely, certain computational problems can be solved
by comparison to the dynamics of such systems. One impor-
tant objective in such problems is the location of the energy
global minimum in configuration space.

In particular, the dynamics of a neural network with sym-
metric cotnections resuit in the decrement of a configura-
tional energy function [17. Such a network can be used to
soive problems in combinatorial optimization [2] where a
minimum energy configuration, corresponding to the com-
bination with minimum cost function, is sought. However,
the energy landscape of the neural network may contain
local minima which result in non-optimal solutions. For
some problems, it may be adequate to obtain near-optimal
solutions, but for certain problems, like the logic interpreta-
tion of sets of clauses [ 37, it is important to find the global
minimum.

There are available several proposed algorithms to avoeid
local minima. In this paper we present a comprehensive
survey of these algorithms by comparing their performances
for a specific problem. We chose Lhe binary representa-
tion problem, where the configuration of the network is
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interpreted as a binary number, and a number is stored by
having it to correspond to the configuration at minimum
energy, thus allowing the global minimum to be known. We
also propose several other algorithms based on the conjec-
ture that stronger connections dominate in the selection of
the global minimum, and we compare their performances as
well. As the performances of the algorithms may vary
depending on the nature of the problem to be solved, and
thus an algorithm ineflicicnt for the sclected problem may
yet be useful in some other, we have preferred breadth
rather than depth in the survey.

2. SYMMETRIC NEURAL NETWORKS AND
COMBINATORIAL OPTIMIZATION

We consider networks of binary neurons: V,e {0, 1},
i=1,.., N, with connections T; and thresholds U, giving
the local field at i as:

h=Y T,V,~ U, ()

[f the network is symmetric and zero-diagonal such that
T,;=T;and T;=0, we can write an energy function [1],

E=—3Y S T,ViV,+ LUV, (2)

i

which menotone decreases for a dynamics where the neural
states become aligned to the local felds, ie., V,— 0(%;)
where @ is the step function.

Combinatoriai optimization involves looking for the
combination of choices from a discrete sct which yields a
minimum value for some associated cost function. if [2] we
map neurons lo choices and equate E to the cost function
concerned, we can carry oul combinatorial optimization on
the neural network. The valucs of the conncetions are
obtained from the equation for E and the network with
these connections are relaxed with the appropriate
dynamics to (hopefully) arrive at the minimum of E and
thus of the cost function. The resulting configuration then
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vields the optimal choices. However, non-optimal solutions
may be obtained when local minima, as opposed to the
global minimum, are reached.

3. BINARY REPRESENTATION PROBLEM

In this paper, we use the binary representation problem
as a benchmark. This problem is useful because the global
minimum is known. It is also relevant as some problems,
like track reconstruction [41, incorporate it in the choice
for parameters in the minimization, and binary representa-
tion is one of the possible representations for these
parameters.

The network configuration is taken as the binary
representation of a number X

3207, =x. (3)

To memorize this number, we can define a cost function

7

2
E:(z 2"‘”V,-~X) 4)
which is minimized when the configuration corresponds to

this number. This yields

Ty=—22"H(2'71),
U,=2%"2-2x

i#]
(3

for the connections and thresholds.

Given these connections, we investigate how often the
correct minmum is found from an arbitrary starting
configuration, using different algotithms.

4. MINIMUM-SEEKING ALGORITHMS

In principle, one can always arrive at the global mini-
mum, by exploring all possible configurations. This is,
however, inefficient; there is a payoff between correctness
and computational input. An algorithm for minimum-
seeking is basically a method of attempting to arrive at
the global minimum, from some iniiial configuration, by
looking at only a small number of configurations, typically
along some trajectory leading to the minimum,

In a previous paper [5], we have compared seven algo-
rithms for minimum-seeking which are in the literature: the
default steepest descent which locally alters configurations
to decrease energy, analog [2,6] or mean field [7]
dynamics, genetic algorithm [87, simulated diffusion [9],
simulated annealing [10], threshold accepting [117], and
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simulated tunneling [12]. These are described schemati-
cally below (we refer the reader to the respective original
papers for more detailed descriptions):

ALGORITHM 1. STEEPEST DESCENT,

given init config

OPT: choose new config: a stochastic small perturb of
old config
compute AFE= E(new config)— E(old config)
=i, AV;
IF AE < 0 then old config := new config
IF for some time,no change then STOP
GO TO OPT

This 15 the steepest descent algorithm in the context of
neural networks. The neurcns are updated sequentially: one
is chosen stochastically and its state is modified to move
down the projection A, of the energy gradient.

ALGORITHM 2. MEAN FIELD/ANALOG DYNAMICS.

given init config

choose init gain 1/7>0

OPT: choose new config: a stochastic small perturb of
old config
compute new config thru I, :=sigmoid(k,, gain)
IF for some time no change then STOP
increase gain (lower T')
GO TO OPT

This algorithm is also a steepest descent algorithm, but
analog neurons are used (F; can have real values). The
neural dynamics need then to be modifted—the step func-
tipn is replaced by a sigmoid function which is parametrized
by a gain.

ALGORITHM 3. GENETIC ALGORITHM.

given init config

generate small population around init config

OPT: mutate each member of population and add to
population '
cross ecach pair in population and add to
population
keep only members w lowest E
IF for some time no change in config w lowest E
then STOP
GO TO OPT

This algorithm is a simulation of biological evolution. We
deal with populations of configurations in which mutation
(random changes in some neural states) and crossovers
(swapping of corresponding sets of neural states between
pairs of configurations) can occur, like the corresponding
processes in chromosomes during biological reproduction.
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ALGORITHM 4. SIMULATED DIFFUSION.

given init config

choose init temperature T> 1)

QPT: calculate local fields
gradient descent using values of local fields
do random walk w no. of steps oc \/ T
IF for some time no change then STOP
lower T
GO TO OPT

This algorithm is related to diffusion in physical systems.
The “diffusion” of a configuration is carried out via a
random walk, which, for the neural network configuration
space, corresponds to state changes in random neurons the
number of which is given by the number of steps.

ALGORITHM 5. SIMULATED ANNEALING.
given init config
choose init temperature 7> 0
OPT: choose new config: a stochastic small perturb of

old config
compute AE = E(new config) — E{old config})
with prob oc exp{ —AE/T)

old config := new config
IF for some time no change then STOP
lower T
GO TO OPT

This algorithm simulates the physical process of
annealing, where a substance is heated wp and cooled,
and the atoms slowly form ordered structures. With this
algorithm, the system is able to climb over energy barriers
in search of lower valleys, with the Boltzmann probability
factor.

ALGORITHM 6. THRESHOLD ACCEPTING.
given init config
choose init threshold 7> 0
OPT: choose new config: a stochastic small perturb of

" old config

compute AE = E(new config) — E(old config)
IF AE < T then old config := new config

IF long time no significant change in £ or too
many iter then lower 7

IF for some time no change then STOP

GO TO OPT

This algorithm alsc allows energy barriers to be climbed,
but without any probabilities involved; as long as the energy
difference is acceptable, a particular change in configuration
is allowed.
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ALGORITHM 7. SIMULATED TUNNELING.

given init config
OPT: generate some population around init config
LOOP: FOR every member of popuiation
choose new config: a stochastic small
perturb of old config
compute AF=F(new config)— E(old
config)
IF AE < 0 then old config ;= new config
IF any w lower E than current min
GO TO OPT
IF for some time no change in config w
lowest E then STOP
GO TO LOOP

This algorithm attempts to copy tunneling in guantum
mechanics. The energies of configurations around but not
necessarily adjacent to the old configuration are caiculated
and if any happen to be lower than that of the latter, the
system “tunnels” to that new configuration.

The results of the tests with these algorithms, reproduced
in Table I, favours threshold accepting (see the next section
for details concerning parameters, etc. ), which gives a higher
rate of success, but at the expense of a larger number of
average updates per neuron in order to arrive at the stabie
configurations.

We have now extended the study to include further runs
of threshold accepting with different parameters in order to
estimate its optimum performance, and other algorithms. In
particular, there is taboo search [ 13, 147, whose algorithm
follows.

ALGORITHM 8. TABQO SEARCH.

given init config

OPT: generate some population around init config
choose best solution for this population which is
not in taboo list
old config := best solution
update taboo list
IF for some time no change in config then STOP
GO TO OPT

Here possible “tracks” to the global minimum are tried in
turn, the best ones first, and an inventory is kept of the ones
which do not really improve the search.

We also include several other algorithms, most of which
are related to field-ordered neural state determination. It is
plaussible to assume that in the coupled dynamics of the
self-organization of the neural states, connections with
greater magnitudes play more dominant roles. Thus it may
be conjectured that more global solutions are obtained
when importance is given to these connections in the
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minimum-seeking algorithms. With this in mind, we have
devised the following algorithms:

ALGORITHM 9, SUBNETWORK GROWING.

subnetwork :={ }
FOR all neuron pairs:
find largest | T,;| w both i, j ¢ subnetwork
subnetwork :=subnetwork | {i, 7}
solve subnetwork using gradient descent w solution of
previous subnetwork as part of init config

ALGORITHM 10. NETWORK CRYSTALIZATION.

find largest {U;]

fix V; depending on U,

done . list := {i}

LOOP:find j, j¢done fist st. ji;| is largest for
subnetwork done _list
fix V; depending on A;
done _list :=done _list |J {j}
IF 3k s.t. k¢ done _list then GO TG LOOP
else STOP

ALGORITHM 11. WEIGHT-WEIGHTED RELAXATION.

given init config

choose init exponent >0

OPT: calculate  connection-weighted
hi=2j Tij ET!;"!T Vi— U;
gradient descent using values of local fields
1F for some time no change then STOP
lower T
GO TO OPT

local fields:

ALGORITHM 12. FIELD-ORDERED UPDATING,

given init config
OPT: calculate local fields A,
update neuron with largest |A;|
IF for some time no change in whole config then
STOP
GO TO OPT

ALGORITHM 13. FIELD-WEIGHTED UPDATING.

given init config
OPT: calcuiate local fields 4,
choose neuron i w prob oc |h,]
update neuron i
IF for some time no change in whole config then
STOP
GO TO OPT
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ALGORITHM 14. ENERGY-WEIGHTED UPDATING.

given init config

OPT: calculate local fields 4,
choose neuron { w prob oc [AE| (=[h, AV,]}
update neuron i
IF for some time no change in whole config then
STOP
GO TO OPT

In the subnetwork growing algorithm, we solve for the
network in stages—at each stage the pair of remaining
neurons with strongest absoluté connections are added to a
subnetwork and the configuration of the subnetwork is
found using gradient descent with the solution to the
previous subnetwork as part of its initial configuration. In
this way, we hope to capture the influences of the stronger
neurons first. The network crystalization algorithm is
similar, but the addition of neurons to the subnetwork is
based on the field rather than the connection strengths, and
the neural values are immediately determined rather than
through gradient descent.

For weight-weighted relaxation, the influence of
the stronger connection magnitudes is included by the
{decreasing) factor which enhances the effects of stronger
connections. In field-ordered updating, the stronger
influences are given preferences in terms of the updating
order of neurons. Neurons expetiencing larger absolute
fields are updated first, then the fields are recalculated for
the others. A variant to this is ficld-weighted updating,
where the updating order follows the same philosophy, but
is implemented stochastically. The probability for a neuron
to be updated depends on the strength of the field that it
feels. 1f this probability depends on the associated energy
change instead, then we have energy-weighted updating.

In addition, there is an algorithm inspired by quantum
tunneling. In this algorithm, the tunneiing mechanism is
through energy-borrowing, allowed by an “uncertainty
principle”: AE Ar < #, where ¢ is timestep. The algorithm is
sketched below.

ALGORITHM 15. QUANTUM TUNNELING.

given init config
OPT: choose new config: a stochastic small perturb of
old config
compute AE = E{new config) — £(old config)
IF AE <0 then old config := new config
ELSE allow change provided AE At <h
IF for some time no change then STOP
GO TC OPT

To enable the climb over local energy barriers, the
following algorithm has also been designed and included in
the study:
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ALGORITHM 16. ENERGY REVERSING,

given init config
OPT: do gradient descent to a minimum
do gradient ascent (by changing sign of E for
N, updates/neuron)
IF for sotne time no change then STOP
reduce N,
GO TO OPT

This algorithm allows for climbing of energy barriers by
occasionally ailowing sign change in the energy. The details
of specific algorithms are described in the next section.

5. NUMERICAL SIMULATIONS

A comparison of the performances of the algorithms in
the previous section as applied on the binary representation
problem is carried out through numerical simulations. In
particular, a 20-neuron network is used. For cach algo-
rithm, 100 random values of X are employed, each using
1000 random initial configurations; i.e., 100,000 trials are
carried out for each algorithm.

For algorithms with the parameter 7 (reciprocal gain,
temperature, threshold, or weight exponent), the following
prescription 1s taken:

Toca, (6)

where ¢ is the neural processing time (timestep, or the
number of updates per neuron) and « is a constant. N, in
energy reversing also follows a similar prescription. For
reciprocal gain, temperature, and threshold, 7 (¢ =0) = 10°
and two values for o, a=100 and «=10, were tried.
The sigmoidal function for analog neurons is
1/(1 +exp(—AE/T)) and the number of steps for the ran-
dom walk in simulated diffusion is taken to be 0.001N \/ T,
where N is the number of neurons.

Simulated tunneling looks at a random population of five
configurations nearest to and including the configuration
under current study. For the genetic algorithm, two other
random nearest configurations are added to the initial con-
figuration to give the set of three configurations studied at
a time. From these three configurations, another three are
obtained by mutating each of them, and from the resulting
six, 15 more are obtained by crossing (swapping random
equivalent sections) each with each of the others, From the
toal of 21, the best three (with lowest E) are selected for the
next generation.

The mutation rate {probability of change in neural value
per neuron) in the genetic algorithm is taken as 0.2. For
analog dynamics, neurons are considered to be of similar
value if they differ by less than 0.01.

For taboo search, the neighbourhood population
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generated is a Hamming distance of 1/N away; ie., the
configurations are different from the original by only one
neuron state. The new configuration is chosen based on the
lowest energy. All others in the neighborhood are placed on
the taboo list. The previous configuration, if higher in
energy compared to the new configuration, is also placed on
the taboo list. If it is lower, then, in Version 1, no action is
taken, or in Version 2, it is temporarily placed on the taboo
list (for the immediate update loop only}. The taboo list is
taken to be a FIFO stack of definite length; we used a length
of 500.

In field-ordered updating, there can be two variations. In
the non-restrictive version, the number of relative updates
of a neuron compared to the others may be different from
one, while in the restrictive case a neuron is only allowed o
be updated once per timestep. We look at the results of the
numerical studies in the following section.

6. RESULTS AND DISCUSSIONS

In Table I we reproduce results from the previous study
(5] (success is the retrieval of the global minimum
configuration with 100% correctness; the time taken to
reach stable end configurations are reflected by the average
number of updates per neuron taken). Except for simulated
tunneling and the genetic algorithm {see Table 1), there is
generally no apparent dependence on X. There is also no
apparent dependence on the Hamming distance (which is
proportional to the number of neural states different) of the
initial configuration to the one at the global minimum,
except again, for simulated tunneling (see Table I).

TABLE I

Previous Numerical Results

Percentage of

success Average updates/neurcn Notes
Steepest descent 278 4.06
Analog o =100 221 4.74
a=10 277 5.73
Genetic 1.42 2817 Very poor for
large X
Sim. diffusion « =100 2.50 448
a=10 230 622
Sim. anneating 2 =100 186 439
=10 292 472
Threshold acc. & = [00 3.94 6.40
z=10 4.11 8.18
Sim. tunneling 0.79 174 Slightly poorer

for larger X;

quick for small
init Hamming
dist

7 Average no. of generations.
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From this initial study, threshold accepting seems to yield
the best rate of success, while simulated tunneling the worst.
The rest are not much better, if at all, when compared to
steepest descent. The smaller value of & seems to generally
give better performance, and that with a perhaps sur-
prisingly small expense in the number of updates to reach
the minimum, The number of updates per neuron to reach
the minimum is roughly of the same order, except for
simulated tunneling, which is larger. Of course, this number
does not correspond directly to computational time since
some algorithms require more computations per update
than others.

The superiority of threshold accepting over, say,
simulated annealing reflects the terrain of the energy
landscape for the particular problem. 1t suggests that the
probability of locating the global energy valley behind a cer-
tain barrier is not efficiently represented by the height of the
barrier (or the Boltzmann factor related to the height). The
success of threshold accepting seems to suggest a landscape
of scattered low “energy hillocks™ behind some of which are
hidden paths to the global vailey. The multidimensional,
but value-restricted, space of the neural network configura-
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TABLE H
Numerical Results—Extended Study of Threshold Accepting

Percentage of

success  Average updates/neuron Notes
Threshold acc.
T(t=0)=10° a=30 461 12.5
a=17 494 19.7 Upd/neuron up to 68
a=13 6.6l 37.0 Max upd/neuron
aver 100
x=1.1 394 ~ 80 Max upd/neuron
over 100
Tr=0)=10% =17 387 7.04 Upd/neuron up
to ~30
a=17 7.09 40.7 Upd/neuron up
to ~585
a=17 8.1% 60.3 Upd/neuron up to {03

tion has to be kept in mind. Ease in traversing these energy
hillocks results in a higher rate of location of the energy
minimum. This is also supported by the results from the
initial and the extended study that for this problem, a lower
rate of decrease of the threshold yields a better performance
in terms of success rate.

The results of the extended study involving more runs

TABLE Il
Numerical Results of Other Algorithms

Percentage of success  Average updates/neuron Notes
Taboo search (Vers. 1) 2.64 10.1 Odd no. updates for odd no. of neural stattes diff & vv
(Vers. 2} 173 119 Qdd no. updates for odd no. of neural states diff & vv
Subnetwork growing 2.63 13.27¢ Upd/neuron up to 33
Network crystalization 0.38 1.45 v poor for large X
Weight-weighted T(r=0)=1,a=2 098 8.13
a=4 301 637
a=§ 322 6.55
a=16 3.09 4,70
T(r=0y=2,2=8 308 570
Field-ordered (no restriction) 00 0.32
(restricted) 4.97 1.16
Field-weighted 0.0 1.79
Energy-weighted 3z 1.00
Quantum tunneling # = 10* 1.87 399
h=10* 2.14 396
fi=10? 262 402
Energy rev. N {1 =0)=20/N,a=2 299 242
N (t=0)=40/N, a=2 372 284
N f1=0)=80/N,a=2 287 334
N1 =0)=40/N, a =4 316 166

@ Iterations needed to show stability for each subnetwork not included,
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with threshold accepting and involving the other algorithms
are given in Tables II and III, respectively. The results
underline the superiority of threshold accepting in terms of
the success rate, although this algorithm requires a huge
number of updates per neuron for convergence. The rate of
success, as well as the number of updates per neuron for
convergence, seem to increase as the rate of decrement of the
threshold is decreased. The run with the decrement rate
nearest to the limit of one yields a success rate that is still
less than 10%. The success rate can perhaps be improved
substantially, but at the expense of huge increases in the
number of updates, while it is at this limit.

Despite the expectation of better performance with
algorithms giving importance to connections of bigger
magnitudes, the results do not exhibit very substantial
improvement from the basic steepest descent algorithm. In
fact, some of the proposed algorithms did especially poorly.
The best exception is field-ordered updating, which, along
with a high rate of success, possesses a very low number of
converging timesteps. With respect to this latter charac-
teristic, it is our opinion that despite its slightly lower rate
of success, it is a better algorithm compared to threshold
accepting, at least for the binary representation problem
applied here.

7. CONCLUSIONS

We have compared eight algorithms for minimum-
seeking that are available in the literature, and we have
proposed and compared eight more, as applied to the
binary representation problem. For this specific problem at
least, and with the parameters used, it seems that, although
threshold accepting (with optimised parameters} vields the
best rate of success, a field-ordered updating scheme offers
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the best solution with a minimal amount of neural proces-
sing steps. Even so, only a small percentage of the time is the
true minimum found, Although one may expect otherwise,
simulated tunneling is a poor failure—somehow the local
population is not large enough to guarantee the position on
a trajectory to the global minimum, Most other schemes do
not outperform steepest descent very much, if at all.

Looking at the best performances, there is still a lot of
need for the design of better algorithms seeking the
minimum-energy configuration.
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